Drug-Induced Anaphylaxis
Case/Non-Case Study Based on an Italian Pharmacovigilance Database

Roberto Leone,1 Anita Conforti,1 Mauro Venegoni,2 Domenico Motola,3 Ugo Moretti,1 Ilaria Meneghelli,1 Alfredo Cocci,2 Giulia Sangiorgi Cellini,3 Stefania Scofo,2 Nicola Montanaro3 and Giampaolo Velo1

1 Clinical Pharmacology Unit, Reference Centre for Education and Communication within the WHO Programme for International Drug Monitoring, University of Verona, Verona, Italy
2 Lombardy Centre of Pharmacovigilance, Milan, Italy
3 Department of Pharmacology, Interuniversity Research Centre for Pharmacoepidemiology, University of Bologna, Bologna, Italy

Abstract

Objective: To identify the number of cases of anaphylaxis reported in association with different classes of drugs and compare it with other reports contained in the same database.

Methods: The data were obtained from a database containing all of the spontaneous reports of adverse drug reactions (ADRs) coming from the Italian regions of Emilia Romagna, Lombardy and the Veneto, which are the main contributors to the Italian spontaneous surveillance system. The ADRs reported between January 1990 and December 2003 with a causality assessment of certainly, probably or possibly drug related (according to the WHO criteria) were analysed using a case/non-case design. The cases were defined as the reactions already coded by the WHO preferred terms of ‘anaphylactic shock’ or ‘anaphylactoid reaction’ (this last term also included anaphylactic reaction) and those with a time of event onset that suggested an allergic reaction and involved at least two of the skin, respiratory, gastrointestinal, CNS or cardiovascular systems; the non-cases were all of the other ADR reports. The frequency of the association between anaphylaxis and the suspected drug in comparison with the frequency of anaphylaxis associated to all of the other drugs was calculated using the ADR reporting odds ratio (ROR) as a measure of disproportionality.

Results: Our database contained 744 cases (including 307 cases of anaphylactic shock with 10 deaths) and 27,512 non-cases. The percentage of anaphylaxis cases reported in inpatients was higher than that among outpatients (59.1% vs 40.9%). This distribution is significantly different from that of the other ADR reports that mainly refer to outpatients. After intravenous drug administrations, anaphylactic shock cases were more frequent than anaphylactoid reactions or other ADRs, but more than one-third of these reactions were caused by an oral drug. Blood substitutes and radiology contrast agents had the highest RORs. Among the systemic antibacterial agents, anaphylaxis was disproportionally reported more often for penicillins, quinolones, cephalosporins and glycoproteins, but diclofenac was the only NSAID with a significant ROR. As a category, vaccines
had a significantly lower ROR, thus indicating that anaphylaxis is reported proportionally less than other ADRs.

Conclusions: Anaphylaxis is a severe ADR that may also occur with commonly used drugs. It represents 2.7% of all of the ADRs reported in an Italian spontaneous reporting database.

Background

Although there is no universal definition of anaphylaxis because of its multi-faceted nature, it can be described as an immediate hypersensitivity reaction with a potentially life-threatening outcome that can affect virtually any organ and is due to the union of an allergen with the IgE of basophils and mast cells. This interaction leads to the rapid release of preformed mediators, such as histamine, and other mediators, such as leukotrienes, which are responsible for the clinical manifestations involving the pulmonary, circulatory, cutaneous, neurological and gastrointestinal systems.[1-3]

Anaphylactoid reactions are clinically indistinguishable from anaphylactic reactions and acute management is the same for both, but anaphylactoid reactions do not necessarily require previous exposure to an inciting substance.[4] They may be immunological and not IgE-mediated or non-immunological, in which case the mediators are directly released by basophils and mast cells.[5]

The most common manifestations of anaphylaxis are erythema, pruritus, urticaria, angioedema, nausea, vomiting, diarrhoea, bronchospasm, laryngeal oedema, hypotension and cardiovascular collapse with shock.[6] There is a direct relationship between the time of onset of the symptoms after antigen administration and their severity: the more rapid the onset, the more severe the episode.[7]

The incidence of anaphylaxis in the general population varies and is often under-reported, partially because of the absence of a standard definition. As only a few epidemiological studies have been published, its exact incidence is difficult to define, but seems to be increasing.[8,9] A collaborative study conducted in Hungary, India, Spain and Sweden and based on definite and probable cases of anaphylaxis, estimated that the overall risk of severe anaphylaxis is 154 per million hospital admissions (0.015%).[10]

In the US, it is estimated that 1 in every 2700 inpatients (0.037%) experiences a drug-induced anaphylactic reaction[11] and a recent review of the current medical literature concerning anaphylaxis in the US has estimated that it affects between 1.21% and 15.04% of the general population.[5] Another general population study of anaphylaxis carried out in Olmsted County (MN/US) found an average annual incidence of 21 per 100 000 person years (95% CI 17, 25), with an occurrence rate of 30 per 100 000 person years (95% CI 25, 35).[12]

Anaphylactic events seem to be related to both age and sex as they are more likely to occur in adults and women.[10,13] An analysis of 4 years of English hospital admissions for anaphylaxis reported an increased incidence in females of child-bearing age, with a ratio of 1.38 (95% CI 1.27, 1.50), thus suggesting that endocrine factors may be important in the pathogenesis of allergic reactions.[14]

The most common reported causes of anaphylaxis are medications, insect stings, food and latex, although any agent capable of stimulating mast cells or basophils is a potential cause.[9] When the cause is not known, idiopathic anaphylaxis is supposed. The incidence of anaphylactic or anaphylactoid reactions varies among classes of drugs and it is known that reactions to antibacterials, especially penicillins, have been observed the most frequently.[6,15] Allergic reactions to penicillins have been reported as occurring during 0.7–8% of treatment courses in different studies and anaphylactic reactions occur in 0.004–0.015%.[16] The incidence of mortality is 0.0015–0.002% or one death per 50,000–100,000 treatment courses.[16]

Other drugs that have been associated with anaphylaxis include aspirin (acetylsalicylic acid) and other NSAIDs, anaesthetic medications, radiology
contrast agents and vaccines; however, it is difficult to make a thorough evaluation of the incidence of anaphylaxis in relation to individual drugs because the reaction is rare and the available data are mainly based on case reports or small case series in which the denominator is unknown.

One case-control study of the risk of anaphylaxis following drug exposure during hospitalisation showed an incidence in the range of 5–15 cases per 100 000 patients for most analgesics and antibacterials, whereas dextran, parenteral penicillin, pentoxifylline and streptokinase were associated with an incidence of ≥30 cases per 100 000 patients.\[17\]

Data concerning drug-related anaphylaxis that is obtained from spontaneous reporting systems in some countries have shown that dextran, radiology contrast agents, antibacterials and NSAIDs are the most frequently involved drugs.\[18-20\] For some drugs, this adverse reaction was unknown at the time of reporting, thus confirming that pharmacovigilance remains essential for signal generation.

Various measures have been taken to decrease the risk of anaphylaxis on the basis of the results of these studies, e.g. the development of non-ionic radiology contrast agents, the marketing of dextran 1 and the worldwide withdrawal of the analgesic glafenine.

It is known that the incidence of an adverse drug reaction (ADR) cannot be estimated on the basis of spontaneous reports, but the development of quantitative methods for measuring signals does make it possible to detect a disproportional number of a reaction when specific knowledge of the composition of a database is presented.\[21,22\]

Objective

The aim of this study, which was based on an Italian spontaneous reporting database, was to identify the number of cases of anaphylaxis reported in association with different drug classes and compare the data with the other reports present in the database.

Methods

The data were obtained from a database containing all of the voluntarily submitted reports of ADRs from the Italian regions of Emilia Romagna, Lombardy and the Veneto. These regions had an estimated population of approximately 18 000 000 inhabitants in January 2000 (about 32% of the Italian population) and are the main contributors to the Italian spontaneous surveillance system (accounting for approximately 54% of all Italian reports). We analysed the spontaneous reports collected between January 1990 and December 2003 in terms of the following information: reporter category, patient’s age and sex, reporter’s ADR diagnosis, characteristics of the underlying diseases, drug exposure (indication, duration of treatment and dose), the time of onset of the event and its outcome. The reports were classified according to the WHO criteria for causality assessment\[23\] and only those with a ‘certain’, ‘probable’ or ‘possible’ causality assessment were included.

The association between drugs and anaphylaxis was analysed using a case/non-case design according to the method described by van Puijenbroek et al.\[24\] The cases (defined with the general term of anaphylaxis) were the reports describing reactions already coded with the WHO preferred terms ‘anaphylactic shock’ or ‘anaphylactoid reaction’. The anaphylactoid reactions also included the anaphylactic reactions, since they share the same clinical features and can not be distinguished on clinical grounds. Moreover, a case by case analysis was made on reports with a time of event onset that suggested an allergic reaction and involved at least two of the skin, respiratory, gastrointestinal, CNS or cardiovascular systems. Among these, reports with allergic symptoms were classified as anaphylactoid reactions, whereas those that included shock-like symptoms and decreased blood pressure were classified as anaphylactic shock. The non-cases were all of the other ADR reports included in the database.

All of the cases were analysed in detail by a specially constituted ad hoc panel of experts, including internists, pharmacologists and immunologists,

© 2005 Adis Data Information BV. All rights reserved.
whose main task was to check the diagnosis of anaphylaxis and the causality relationship.

The frequency of the association between anaphylaxis and the suspected drug in comparison with the frequency of anaphylaxis associated to all the other drugs was calculated using the ADR reporting odds ratio (ROR) as a measure of disproportionality.[24] The ROR is identical to the calculation of an odds ratio from a case-control study that compares each drug in turn to all other drugs. Odds ratios and their 95% CIs (adjusted for age, sex and patient typology) were calculated by means of logistic regression using SPSS statistical software. The \(\chi^2 \) test or Student’s t-test were used to compare cases and non-cases as appropriate. Differences were considered significant with p-values of <0.05.

Results

As of December 2003, the database contained 30 975 ADR reports, of which 2276 (7.3%) were excluded because they were unclassifiable or the causality assessment was ‘unlikely’. The primary selection identified a total of 1187 cases of anaphylaxis, but the expert panel excluded 443 cases because the diagnosis of anaphylaxis was uncertain. The analysis was, therefore, based on 744 cases (including 307 cases of anaphylactic shock with 10 deaths) and 27 512 non-cases. Among the included reports, the causality assessment was certain in 5%, probable in 59% and possible in 36%, with no significant differences between the cases and non-cases.

Table I shows the main characteristics of the patients. There were no significant differences between the cases and non-cases in terms of age and sex. Patients were also divided, on the basis of the reporter categories, into outpatients (reports coming from general practitioners and emergency rooms) and inpatients (from other hospital wards). The percentage of anaphylaxis cases was higher among hospital patients than outpatients (see table I); this was particularly evident for anaphylactic shock (69.6% vs 30.4%). This distribution was significantly different from that of the other ADR reports, which mainly referred to outpatients.

<table>
<thead>
<tr>
<th>Table I. Main patient characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient characteristics</td>
</tr>
<tr>
<td>Sex [n (%)]</td>
</tr>
<tr>
<td>females</td>
</tr>
<tr>
<td>males</td>
</tr>
<tr>
<td>Mean age (years) ± SD</td>
</tr>
<tr>
<td>Patient typology [n (%)]</td>
</tr>
<tr>
<td>outpatients</td>
</tr>
<tr>
<td>inpatients</td>
</tr>
</tbody>
</table>

a \(\chi^2 \) test.
b Student’s t-test.
NS = not significant.

Two hundred and sixty different drugs were suspected of causing anaphylaxis. Ninety-two percent of cases were attributed to only one suspected drug; a similar percentage was observed in non-cases (91%). Table II shows the differences between cases and non-cases in relation to the drug administration route: anaphylactic shock was more frequently reported after intravenous administration than either anaphylactoid reactions or other ADRs; however, more than one-third of the cases of anaphylactic shock were caused by an oral drug.

Table III shows the main six drug categories that were associated with an outcome of anaphylaxis, with the corresponding number of other reported ADRs and the ROR. Among the systemic antibacterial agents, anaphylaxis was disproportionally more often reported in relation to penicillins, quinolones, cephalosporins and glycopeptides with a significant ROR (table IV). The individual antibacterial agents (with a total of \(\geq 30 \) reports) that were suspected of causing anaphylaxis are listed in table V.

As shown in table VI, diclofenac was the only NSAID with a significant ROR. There was significant disproportionality between the cases and non-cases for all of the radiology contrast agents (table VII). Propyphenazone (ROR 5.81; 95% CI 3.52, 9.59) and dipyrone (ROR 2.39; 95% CI 1.22, 4.72) were the analgesic drugs that were mainly responsible for anaphylaxis. There were also reports of anaphylaxis that were related to all blood substitutes and perfusion solutions, but the only agents with a...
number of reports suitable for analysis were polyge-
line (ROR 16.62; 95% CI 9.90, 27.90) and human
albumin (ROR 7.75; 95% CI 2.95, 20.37). As a
category, vaccines had a significantly lower ROR,
thus indicating that anaphylaxis is reported propor-
tionally less than other ADRs.

Discussion

This study originated from spontaneous reporting
data concerning anaphylaxis and so the results
should be interpreted in this context. The main aim
of spontaneous reporting systems is to detect previ-
ously unknown adverse drug-related events or those
occurring in a quantitatively or qualitatively differ-
ent manner from that expected. Quantitative meth-
ods have recently been developed to supplement the
simple inspection of reports, all of which are based
on an assessment of how much the observed report-
ing frequency of a given ADR deviates from that
expected within a database.[25]

Analysis of databases should take into account
any possible bias that is related to spontaneous re-
porting. One well known problem is under report-
ing, but when all drug reactions are similarly under
reported it is assumed that this would not lead to a
systematic bias in the analysis of large databases.[26]
However, uneven under reporting may be a signifi-
cant problem. High reporting of a reaction can be
related to a temporary special attention by doctors
(e.g. new reactions to a new drug, media claims,
specific guidelines, etc.), whereas a well known
reaction may not be reported. Moreover, when using
disproportionality measures in analysis of spontane-
ous reporting, the association between a drug and a
reaction may be artificially decreased if another
drug-specific reaction is widely reported because
this dilutes the association by increasing the pres-
ence of the drug in non-case reports.[27]

In this study, we applied the case/non-case
method to an Italian spontaneous reporting database
by comparing the ratio of anaphylaxis reports
(cases) that were identified by clinical signs and chronology with those referring to all other ADRs
(non-cases) and looked for associations with patient
characteristics and specific drugs or drug classes.
Given the characteristics of spontaneous reporting
and the variability in terminology used by doctors to
report an ADR, the cases included both anaphylactic
and anaphylactoid reactions because although their
physiopathology differs, their clinical manifesta-
tions are often not clearly distinguishable.

In the period 1990–2003, the reports of anaphy-
laxis accounted for 2.7% of all of the ADR reports in
the database. This percentage is about four times
higher than that found by van Puijenbroek et al.[24]
in a Dutch study that shared many characteristics with
our own in terms of the total number of reports in the
spontaneous reporting database, the time of observa-
tion and the case selection criteria. We have no data
concerning under reporting in the two countries, but
we have no reason to think that it would be specifi-
cally different for anaphylaxis.

A number of studies have shown marked vari-
bility among European countries in the consump-
tion of some classes of drugs, such as antibacterials,[28]
NSAIDs[29] and lipid-lowering agents.[30] The an-

<table>
<thead>
<tr>
<th>Administration route</th>
<th>Drugs suspected in cases [n (%)]</th>
<th>Drugs suspected in non-cases [n (%)]</th>
<th>p-Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>anaphylactoid reactionb</td>
<td>anaphylactic shock</td>
<td>non-cases</td>
</tr>
<tr>
<td>Oral</td>
<td>221 (46.4)</td>
<td>125 (36.2)</td>
<td>16154 (52.9)</td>
</tr>
<tr>
<td>Intravenous</td>
<td>144 (30.3)</td>
<td>159 (46.1)</td>
<td>1911 (6.3)</td>
</tr>
<tr>
<td>Other parenteral</td>
<td>83 (17.4)</td>
<td>44 (12.7)</td>
<td>4490 (14.7)</td>
</tr>
<tr>
<td>Other routes</td>
<td>25 (5.3)</td>
<td>14 (4.1)</td>
<td>1019 (3.3)</td>
</tr>
<tr>
<td>Undefined</td>
<td>3 (0.6)</td>
<td>3 (0.9)</td>
<td>6961 (22.8)</td>
</tr>
<tr>
<td>Total</td>
<td>476 (100)</td>
<td>345 (100)</td>
<td>30 535 (100)</td>
</tr>
</tbody>
</table>

*χ² test (cases vs non-cases).

b WHO Adverse Reaction Terminology (WHO-ART) term that also includes anaphylactic reaction.

NA = not applied; NS = not significant.
Table III. Drug categories suspected of causing anaphylaxis (cases) and other reported adverse drug reactions (non-cases)

<table>
<thead>
<tr>
<th>Drug categoriesa</th>
<th>Cases [n (%)]b</th>
<th>Non-cases [n (%)]b</th>
<th>Reporting odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibacterials for systemic use</td>
<td>255 (34.3)</td>
<td>5833 (21.2)</td>
<td>1.94 (1.66, 2.26)</td>
</tr>
<tr>
<td>NSAIDs and aspirin (acetylsalicylic acid)</td>
<td>104 (14.0)</td>
<td>3131 (11.4)</td>
<td>1.27 (1.03, 1.56)</td>
</tr>
<tr>
<td>Radiology contrast agents</td>
<td>100 (13.4)</td>
<td>576 (2.1)</td>
<td>7.26 (5.79, 9.11)</td>
</tr>
<tr>
<td>Vaccines</td>
<td>50 (6.7)</td>
<td>3315 (12.0)</td>
<td>0.53 (0.39, 0.70)</td>
</tr>
<tr>
<td>Analgesic drugs</td>
<td>40 (5.4)</td>
<td>806 (2.9)</td>
<td>1.88 (1.36, 2.61)</td>
</tr>
<tr>
<td>Blood substitutes and perfusion solutions</td>
<td>33 (4.4)</td>
<td>118 (0.4)</td>
<td>10.78 (7.27, 15.96)</td>
</tr>
</tbody>
</table>

* a Categories with ≥30 reports of anaphylaxis.
* b The percentages refer to the total number of cases or non-cases.

The distribution of drugs among cases and non-cases by an administration route clearly shows the association between anaphylactic shock and intravenous drug administration, thus confirming that “ana- phylactic reactions are usually more dramatic when the drug is given by injection than when it is given orally.”[32] Intravenous drug administration is almost exclusively used in hospital settings, which may explain the greater frequency of anaphylaxis in inpatients in comparison with other ADRs. On the contrary, ADRs other than anaphylaxis are more frequently reported in outpatients and are associated with orally administered drugs (obviously because this is the most common route of drug administration).

We did not find any differences in the distribution of age and sex among the cases and non-cases. Females were more likely to develop anaphylaxis as well as the other ADRs. A common finding of several studies that were based on spontaneous reporting and other surveillance systems was that women experience more ADRs than men.[9,33,34] This is probably related to multiple factors that depend on the type of reaction, such as differences in pharmacokinetics, the influence of circulating hormones on drug metabolism, the greater consumption of drugs by women and their higher reporting rate to doctors.[13]

The drug categories that were most frequently reported as the cause of anaphylaxis were in line with the medical literature (antibacterials, NSAIDs, etc.). Blood substitutes (polygeline and human albumin) and radiology contrast agents were the categories with the highest ROR, thus indicating that anaphylaxis is probably their most frequent serious adverse event. Polygeline, a polymerised gelatin used as a plasma volume expander, is known to cause anaphylaxis with an incidence ranging from 0.78% to 26%.[36,37] Histamine release is also a well known effect of human albumin,[38] although to a lesser extent than polygeline, but the incidence of allergic reactions due to albumin seems to be low.[39,40]

It is well known that low-osmolality, non-ionic radiology contrast agents cause fewer life-threaten-
Among the glycopeptide antibacterials, we found a higher ROR for teicoplanin even though it is generally reported to be better tolerated than vancomycin (ROR 0.90; 95% CI 0.12, 6.56).\[60] There are no published case reports of anaphylaxis and the first case of hypersensitivity was published in May 2004.\[61] However, the WHO database contains 29 reports of anaphylactic shock and 25 of anaphylactic reactions that are associated with teicoplanin, including those that come from Italy (Leone R, personal research: WHO database).

Our analysis indicates that diclofenac is the NSAID that is most frequently associated with anaphylaxis and it is worth noting that this result is similar to that found by van Puijenbroek et al.\[54] in the Netherlands. There are some published cases of diclofenac-induced anaphylaxis after oral administration and patch testing.\[62-66] In a case-cohort study of 934 hospital admissions for anaphylaxis in The Netherlands, diclofenac was one of the most common drug-related causes; the authors estimated an incidence of diclofenac-induced anaphylaxis of 1 in 10 000 to 1 in 20 000 prescriptions.\[67] It has been suggested that diclofenac is associated with selective hypersensitivity without cross-reactivity with other NSAIDs\[68] and in an experimental setting, the drug induces a direct T cell-dependent popliteal lymph node reaction and has intrinsic adjuvant activity that selectively induces the interleukin-4 mediated production of IgG1 and IgE.\[69]

Table V. Individual antibacterial agents suspected of causing anaphylaxis

<table>
<thead>
<tr>
<th>Drug</th>
<th>Reporting odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinoxacin</td>
<td>11.97 (6.53, 21.94)</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>4.74 (2.15, 10.45)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>3.75 (2.43, 5.79)</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>3.43 (1.48, 7.95)</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>3.01 (1.96, 4.60)</td>
</tr>
</tbody>
</table>

*Authors with ≥30 reports of anaphylaxis.

Table VI. Number of cases and non-cases attributed to NSAIDs and aspirin (acetylsalicylic acid)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Cases</th>
<th>Non-cases</th>
<th>Reporting odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac</td>
<td>30</td>
<td>353</td>
<td>3.23 (2.21, 4.73)</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>15</td>
<td>339</td>
<td>1.65 (0.98, 2.78)</td>
</tr>
<tr>
<td>Aspirin</td>
<td>15</td>
<td>566</td>
<td>0.98 (0.58, 1.64)</td>
</tr>
<tr>
<td>Nimesulide</td>
<td>8</td>
<td>495</td>
<td>0.59 (0.29, 1.20)</td>
</tr>
<tr>
<td>Naproxen</td>
<td>7</td>
<td>141</td>
<td>1.84 (0.86, 3.95)</td>
</tr>
<tr>
<td>Ketorolac</td>
<td>6</td>
<td>150</td>
<td>1.48 (0.65, 3.36)</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>4</td>
<td>128</td>
<td>1.16 (0.43, 3.14)</td>
</tr>
<tr>
<td>Rofecoxib</td>
<td>3</td>
<td>234</td>
<td>0.47 (0.15, 1.48)</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>2</td>
<td>254</td>
<td>0.29 (0.07, 1.17)</td>
</tr>
<tr>
<td>Piroxicam</td>
<td>1</td>
<td>167</td>
<td>0.22 (0.03, 1.58)</td>
</tr>
</tbody>
</table>

*Only the drugs with ≥100 reports.
agent capable of activating mast cells or basophils can potentially cause anaphylactic or anaphylactoid reactions. Levofloxacin, cinoxacin, ceftriaxone, diclofenac, propyphenazone and dipyrone are widely used in Italy, but showed a significant disproportionality for anaphylaxis in comparison with other ADRs.

The most important point to bear in mind regarding anaphylaxis is that it is preferable to prevent it occurring rather than having to treat a reaction. Unfortunately, these ADRs are characterised by their unpredictable nature and a predisposition to anaphylaxis is not easily recognisable or testable. In clinical practice prevention methods are to collect background information about the history of previous anaphylactic episodes and replace the offending agent with another that is not cross-reactive. Other useful measures could be the proper recognition of anaphylaxis when it occurs and employment of a 20–30-minute observation period after the administration of dipyrone is controversial because of life-threatening adverse events, such as agranulocytosis and aplastic anaemia, and its use is banned in various countries. Cases of anaphylaxis following dipyrone therapy have mainly been reported in Spain, Germany and Russia.[71-73] In Italy, propyphenazone is also available over the counter in association with a peripheral cough suppressant and the suppository formulation is widely used in children. The administration of dipyrone is controversial because of life-threatening adverse events, such as agranulocytosis and aplastic anaemia, and its use is banned in various countries. Cases of anaphylaxis following dipyrone therapy have mainly been reported in Spain, Germany and Russia.[71-73]

Over the 14 years of our pharmacovigilance system, 3365 adverse reactions related to vaccines have been reported, including 50 cases of anaphylaxis. Unlike in the case of other drugs, we found that the ROR for vaccines was <1, which may reflect a bias related to the tendency of Italian doctors to report any (serious and non-serious) adverse vaccine reaction (as also required by a recent law), thus leading to a high proportion of non-cases. However, a low rate of anaphylaxis after the vaccination of children and adolescents has also been observed in a study population, with an estimated risk of 0.65 cases per million vaccine doses (95% CI 0.21, 1.53).[74]

Acknowledgements

We are very grateful to the Pharmaceutical Departments of Emilia Romagna, Lombardy and the Veneto and their local Health Districts for collecting the adverse reaction forms. We would also like to thank the Uppsala Monitoring Centre for allowing us to consult the WHO database. No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest that are directly relevant to the content of this study.

References

46. Dewachter P, Mouton-Fauvre C, Felden F. Allergy and contrast media. Allergy 2001; 56: 250-1
51. Lasser EC. The multipotential pseudoantigenicity of X-ray contrast media: pseudoantigen excess may downregulate the release of hypotensive mediators. Int Arch Allergy Immunol 2000; 123: 282-90
55. Smythe MA, Carpenter DM. Anaphylactoid reaction to levofoxacin. Pharmacotherapy 2000; 20: 1520-3
69. Gutting BW, Updyke LW, Amacher DE. Diclofenac activates T cells in the direct popliteal lymph node assay and selectively induces IgG1 and IgE against co-injected TNP-OVA. Toxicol Lett 2002; 131: 167-80

Correspondence and offprints: Dr Roberto Leone, Clinical Pharmacology Unit, Policlinico G.B. Rossi, Piazzale L. Scuro 10, 37134 Verona, Italy. E-mail: rleone@sfm.univr.it